Vitamin B12 or cobalamin is an essential coenzyme that needs to be taken up with the diet (O’Leary and Samman 2010). One enzyme requiring cobalamin as coenzyme is methionine-synthase, which is involved in the regeneration of tetrahydrofolate for the de novo synthesis of purine and pyrimidine bases. Therefore, a lack of cobalamin can cause anemia by negatively affecting the cell proliferation activity of the bone marrow and in turn the production of erythrocytes (O’Leary and Samman 2010; Rush et al. 2014). Another enzyme requiring cobalamin as coenzyme is methylmalonyl-CoA mutase. This enzyme catalyzes the conversion of methylmalonyl-CoA to succinyl-CoA to fuel the citric acid cycle, and it is believed that the accumulation of methylmalonyl-CoA causes the neurological defects associated with cobalamin deficiency (O’Leary and Samman 2010; Rush et al. 2014).

Absorption of cobalamin requires intrinsic factor, a glycoprotein that is secreted by parietal cells and forms a complex with cobalamin in the duodenum. In the distal part of the ileum, this complex is endocytosed by binding to the mucosal cell receptor cubilin. Following its release from intrinsic factor, cobalamin is bound by transport proteins called transcobalamins and distributed throughout the body via the blood system (O’Leary and Samman 2010; Andrès et al. 2004).

Pernicious anemia, first described by Thomas Addison in 1849, is an autoimmune disease that affects approximately 15 – 20% of elderly patients suffering from cobalamin deficiency (Andrés et al. 2004; Annibale and Antico 2014; Schade et al. 1967a; Schade et al. 1967b). Two types of anti-intrinsic factor autoantibodies that bind to different epitopes are known. While type I antibodies block the formation of the intrinsic factor-cobalamin complex, type II antibodies inhibit the binding of the complex to its receptor in the ileum (Schade et al. 1967a; Schade et al. 1967b). Using recombinant intrinsic factor, both types of antibodies could be detected in patient samples (Nexo et al. 2005).

DIARECT’s recombinant full-length intrinsic factor is produced in the baculovirus/insect cell expression system.

Ordering Information

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>16700</td>
<td>Intrinsic Factor</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>16701</td>
<td></td>
<td>1.0 mg</td>
</tr>
</tbody>
</table>

References:

Addison (1849) London Med Gazette. 43:517-518
Andrés et al. (2004) CMAJ. 171:251-259
Schade et al. (1967a) J Clin Invest. 46:615-620
Schade et al. (1967b) Clin Exp Immunol. 2:399-413

In some countries the use of certain antigens in diagnostic tests may be protected by patents. DIARECT is not responsible for the determination of these issues and suggests clarification prior to use.